by Jacqueline Nolis and Emily Robinson
Build a Career in Data Science teaches you what data science courses leave out: from how to land your first job to the lifecycle of a data science project and even how to become a manager. This is a true how-to on obtaining and then navigating a data science career--filled with real stories from data scientists. This podcast is an extension of the similarly named book: Build a Career in Data Science.
Language
🇺🇲
Publishing Since
9/10/2020
Email Addresses
1 available
Phone Numbers
0 available
October 2, 2022
<p>This very surprise bonus episode was made after Emily and Jacqueline found themselves simultaneously unemployed. Here Emily will chat about being part of a 15% company-wide labor reduction while Jacqueline walks through the steps she's been doing as she interviews with new companies. Join them for some vulnerable conversation that are relevant to this current wave of layoffs.</p>
October 7, 2021
<p>In this special live episode recorded at PyLadies London, Emily and Jacqueline discuss those little subfields of data science like experimentation and fraud. They ponder the benefits of becoming more specialized in your career and how different fields have different cultures. The episode ends with a Q&A using live audience questions!</p>
June 3, 2021
<p>In the final episode of Season 1, Emily and Jacqueline take a moment to reflect on all they've learned in writing a book and making a podcast about data science careers.</p>
Pod Engine is not affiliated with, endorsed by, or officially connected with any of the podcasts displayed on this platform. We operate independently as a podcast discovery and analytics service.
All podcast artwork, thumbnails, and content displayed on this page are the property of their respective owners and are protected by applicable copyright laws. This includes, but is not limited to, podcast cover art, episode artwork, show descriptions, episode titles, transcripts, audio snippets, and any other content originating from the podcast creators or their licensors.
We display this content under fair use principles and/or implied license for the purpose of podcast discovery, information, and commentary. We make no claim of ownership over any podcast content, artwork, or related materials shown on this platform. All trademarks, service marks, and trade names are the property of their respective owners.
While we strive to ensure all content usage is properly authorized, if you are a rights holder and believe your content is being used inappropriately or without proper authorization, please contact us immediately at [email protected] for prompt review and appropriate action, which may include content removal or proper attribution.
By accessing and using this platform, you acknowledge and agree to respect all applicable copyright laws and intellectual property rights of content owners. Any unauthorized reproduction, distribution, or commercial use of the content displayed on this platform is strictly prohibited.