by Channel Your Enthusiasm
<p>A chapter by chapter recap of Burton Rose’s classic, The Clinical Physiology of Acid Base and Electrolyte Disorders, a kidney physiology book for nephrologists, fellows, residents and medical students.</p>
Language
🇺🇲
Publishing Since
1/25/2021
Email Addresses
1 available
Phone Numbers
0 available
March 23, 2025
<p data-rte-preserve-empty="true" style="white-space:pre-wrap;">We are a bit slappy at the beginning of the episode since we had just recorded our conversation with the <a target="_blank" href="https://www.rosebook.club/episodes/2023/3/4/glaucomflecken">Glaucomfleckens</a>. <br><br><strong>References</strong></p><p data-rte-preserve-empty="true" style="white-space:pre-wrap;">Chapter 18 Metabolic alkalosis! </p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Part 1 February 23, 2023</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><a href="https://pubmed.ncbi.nlm.nih.gov/22223876/">It is chloride depletion alkalosis, not contraction alkalosis</a> classic review by Galla and Luke, the metabolic alkalosis mavens who review the role of chloride.</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><a href="https://pubmed.ncbi.nlm.nih.gov/2450456/">On the mechanism by which chloride corrects metabolic alkalosis in man</a> and this is the study when they induced a metabolic alkalosis and studied the effect of treating with KCl vs NaPhos and found the former (with chloride) reversed the alkalosis but not the sodium containing protocol. </p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Some elegant reports on the increased proximal reabsorption of bicarbonate above normal stimulated by Ang II. </p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><a href="https://journals.physiology.org/doi/abs/10.1152/ajprenal.1985.248.5.f621">Tubular transport responses to angiotensin | American Journal of Physiology-Renal Physiology</a></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><a href="https://physoc.onlinelibrary.wiley.com/doi/full/10.1113/EP085075">Crosstalk between the renal sympathetic nerve and intrarenal angiotensin II modulates proximal tubular sodium reabsorption - Pontes - 2015 - Experimental Physiology - Wiley Online Library</a></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><a href="https://www.jci.org/articles/view/102050">THE RENAL REGULATION OF ACID-BASE BALANCE IN MAN. III. THE REABSORPTION AND EXCRETION OF BICARBONATE</a> 1949 this is the correct figure for 11.14 and shows what happens when filtered bicarb exceeds normal threshold in normal human (men) and appears in the urine. </p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Masterful review <a href="https://pubmed.ncbi.nlm.nih.gov/4600132/">Symposium on acid-base homeostasis. The generation and maintenance of metabolic alkalosis</a> by Seldin and Rector </p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">And a modern review from Michael Emmet! <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7769018/">Metabolic Alkalosis - PMC</a> (so many favorite reviews on this exciting topic!) and this one from Soleimani <a href="https://www.ajkd.org/article/S0272-6386(22)00516-9/fulltext">Metabolic Alkalosis Pathogenesis, Diagnosis, and Treatment: Core Curriculum 2022</a> both of these elaborate on pendrin’s role. </p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><a href="https://pubmed.ncbi.nlm.nih.gov/13190687/">The effect of prolonged administration of large doses of sodium bicarbonate in man</a> (Clin Sci. 1954 Aug;13(3):383-401)</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Kidney v Renal: <a href="https://pubmed.ncbi.nlm.nih.gov/32409237/">KDIGO</a> versus <a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC8192439/#R1">Don’t</a></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Plus: We got a little off topic and discussed the Kidney Failure Risk Equation: <a href="https://kidneyfailurerisk.com/">https://kidneyfailurerisk.com/</a></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"></p><p data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Outline: Chapter 18Metabolic Alkalosis</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Elevation of arterial pH, increased plasma HCO3, and compensatory hypoventilation</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">High HCO3 may be compensatory for respiratory acidosis</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">HCO3 > 40 indicates metabolic alkalosis</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Pathophysiology: Two Key Questions</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">How do patients become alkalotic?</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Why do they remain alkalotic?</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Generation of Metabolic Alkalosis</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Loss of H+ ions</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">GI loss: vomiting, GI suction, antacids</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Renal loss: diuretics, mineralocorticoid excess, hypercalcemia, post-hypercapnia</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Administration of bicarbonate</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Transcellular shift</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">K+ loss → H+ shifts intracellularly</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Intracellular acidosis</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Refeeding syndrome</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Contraction alkalosis</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Same HCO3, smaller extracellular volume → increased [HCO3]</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Seen in CF (sweating), illustrated in Fig 18-1</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Common theme: <strong>hypochloremia</strong> is essential for maintenance</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Maintenance of Metabolic Alkalosis</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Kidneys normally excrete excess HCO3</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Example: Normal subjects excrete 1000 mEq NaHCO3/day with minor pH change</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Impaired HCO3 excretion required for maintenance</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Table 18-2</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Mechanisms of Maintenance</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Decreased GFR (less important)</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Increased tubular reabsorption</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Proximal tubule (PT): reabsorbs 90% of filtered HCO3</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">TALH and distal nephron manage the rest</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Contributing factors:</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Effective circulating volume depletion</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Enhances HCO3 reabsorption</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Ang II increases Na-H exchange</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Increased tubular [HCO3] enables more H+ secretion</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Distal nephron HCO3 reabsorption</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Stimulated by aldosterone (↑ H-ATPase, ↑ Na reabsorption)</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Negative luminal charge impedes H+ back-diffusion</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Chloride depletion</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Reduces NaK2Cl activity → ↑ renin → ↑ aldosterone</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Luminal H-ATPase co-secretes Cl → low Cl increases H+ secretion</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Cl-HCO3 exchanger needs Cl gradient → low Cl impairs HCO3 secretion</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Key conclusion</strong>: Cl depletion > volume depletion in perpetuating alkalosis</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Albumin corrects volume but not alkalosis</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Non-N Cl salts correct alkalosis without fixing volume</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Hypokalemia</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Stimulates H+ secretion and HCO3 reabsorption</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Transcellular shift (H/K exchange) → intracellular acidosis</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">H-K ATPase reabsorbs K and secretes H</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Severe hypokalemia reduces Cl reabsorption → ↑ H+ secretion</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Important with mineralocorticoid excess</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Respiratory Compensation</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Hypoventilation: 0.7 mmHg PCO2 ↑ per 1 mEq/L HCO3 ↑</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">PCO2 can exceed 60</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Rise in PCO2 increases acid excretion (limited effect on pH)</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Epidemiology</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>GI Hydrogen Loss</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Gastric juice: high HCl, low KCl</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Stomach H+ generation → blood HCO3</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Normally recombine in duodenum</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Vomiting/antacids prevent recombination → alkalosis</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Antacids (e.g., MgOH)</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Mg binds fats, leaves HCO3 unbound → alkalosis</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Renal failure impairs excretion</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Cation exchange resins (SPS, MgCO3)</strong> → same effect</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Congenital chloridorrhea</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">High fecal Cl-, low pH → metabolic alkalosis</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">PPI may help by reducing gastric Cl load</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Renal Hydrogen Loss</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Mineralocorticoid excess & hypokalemia</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Aldosterone → H+ ATPase stimulation, Na+ reabsorption → negative lumen → ↑ H+ secretion</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Diuretics (loop/thiazide)</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Volume contraction</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Secondary hyperaldosteronism</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Increased distal flow and H+ loss</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Posthypercapnic alkalosis</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Chronic respiratory acidosis → ↑ HCO3</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Rapid correction (ventilation) → unopposed HCO3 → alkalosis</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Gradual CO2 correction needed</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Maintenance: hypoxemia, Cl loss</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Low chloride intake (infants)</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Na+ reabsorption must exchange with H+/K+</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">H+ co-secretion with Cl impaired if Cl is low</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>High dose carbenicillin</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">High Na+ load without Cl</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Nonresorbable anion → hypokalemia, alkalosis</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Hypercalcemia</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">↑ Renal H+ secretion & HCO3 reabsorption</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Can contribute to milk-alkali syndrome</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Rarely causes acidosis via reduced proximal HCO3 reabsorption</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Intracellular H+ Shift</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Hypokalemia</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Common cause and effect of metabolic alkalosis</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">H+/K+ exchange → intracellular acidosis → ↑ H+ excretion</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Refeeding Syndrome</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Rapid carb reintroduction → cellular shift</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">No volume contraction or acid excretion increase</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Retention of Bicarbonate</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Requires impaired excretion to become significant</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Organic anions (lactate, acetate, citrate, ketoacids)</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Metabolism → CO2 + H2O + HCO3</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Citrate in blood transfusion (16.8 mEq/500 mL)</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">8 units → alkalosis risk</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>CRRT + citrate anticoagulant</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Sodium bicarbonate therapy</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Rebound alkalosis possible with acid reversal (e.g., ketoacidosis)</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Extreme cases: pH up to 7.9, HCO3 up to 70</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Contraction Alkalosis</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">NaCl and water loss without HCO3</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Seen in vomiting, diuretics, CF sweat</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Mild losses neutralized by intracellular buffers</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Symptoms</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Often asymptomatic</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>From volume depletion</strong>: dizziness, weakness, cramps</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>From hypokalemia</strong>: polyuria, polydipsia, weakness</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>From alkalosis (rare)</strong>: paresthesias, carpopedal spasm, lightheadedness</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">More common in respiratory alkalosis due to rapid pH shift across BBB</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Physical exam not usually helpful</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Clues: signs of vomiting</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Diagnosis</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>History is key</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">If unclear, suspect:</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Surreptitious vomiting</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">CF</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Secret diuretic use</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Mineralocorticoid excess</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Use urine chloride</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Table 18-3: urine Na is misleading in alkalosis</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Table 18-4: urine chemistry changes with complete HCO3 reabsorption</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Vomiting: low urine Na, K, Cl + acidic urine</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Sufficient NaCl intake prevents this stage</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Exceptions to low urine Cl:</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Severe hypokalemia</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Tubular defects</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">CKD</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Distinguishing from respiratory acidosis</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Use pH as guide</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Caution with typo (duplicate pCO2)</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">A-a gradient might help</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Treatment</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Correct K+ and Cl− deficiency → kidneys self-correct</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Upper GI losses</strong>: add H2 blockers</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Saline-responsive alkalosis</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Treat with NaCl</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Mechanisms:</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Reverse contraction component</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Reduce Na+ retention → promote NaHCO3 excretion</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">↑ distal Cl delivery → enable HCO3 secretion via pendrin</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Monitor urine pH: from 5.5 → 7–8 with therapy</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Give K+ with Cl, not phosphate, acetate, or bicarbonate</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Saline-resistant alkalosis</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Seen in edematous states or K+ depletion</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Edema (CHF, cirrhosis)</strong>: use acetazolamide, HCl, dialysis</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Acetazolamide: may ↑ CO2 via RBC carbonic anhydrase inhibition</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Mineralocorticoid excess</strong>: K+ + K-sparing diuretic (use caution)</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Severe hypokalemia</strong>:</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">eNaC Na+ reabsorption must be countered by H+ if no K+</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Corrects rapidly with K+ replacement</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Restores saline responsiveness</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Renal failure</strong>: requires dialysis</p>
February 21, 2025
<p data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>References</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">I said I used <a href="https://www.mdcalc.com/">MDCalc</a> but I was mistaken I use <a href="https://medcalx.ch/">MedCalX</a> which is nice but getting dated. </p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">We talked about this out of print book that we love: Cohen, J. J., Kassirer, J. P. (1982). Acid-base. United States: Little, Brown.</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Josh mentioned this article that looked at over 17,000 samples with simultaneous measured and calculated bicarbonate and found a very small difference. <a href="https://academic.oup.com/clinchem/article/54/9/1586/5628805">Comparison of Measured and Calculated Bicarbonate Values | Clinical Chemistry | Oxford Academic</a></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Base deficit or excess- <a href="https://www.nejm.org/doi/full/10.1056/NEJMra1711860">Diagnostic Use of Base Excess in Acid–Base Disorders | NEJM</a> (check out the accompanying letter to the editor from Melanie challenging this article! Along with colleagues Lecker and Zeidel <a href="https://pubmed.ncbi.nlm.nih.gov/30070101/">Diagnostic Use of Base Excess in Acid-Base Disorders</a> )</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Melanie loves this paper which shows a nice correlation between arterial and venous pH but the rest of the comparisons are disappointing - <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2660085/">Comparison of arterial and venous pH, bicarbonate, Pco2 and Po2 in initial emergency department assessment - PMC</a></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><a href="https://pubmed.ncbi.nlm.nih.gov/3126258/">A nomogram for the interpretation of acid-base data</a> is figure 17-1 in the book, this manuscript with the ! in the conclusion creates the acid-base map. </p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">We debated about whether we like Winter’s formula: <a href="https://pubmed.ncbi.nlm.nih.gov/6016545/">Quantitative displacement of acid-base equilibrium in metabolic acidosis</a> (melanie does b/c it used real patients). </p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Amy’s Voice of God on Dietary Acid Load</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Review of dietary acid load: <a href="https://pubmed.ncbi.nlm.nih.gov/23439373/">https://pubmed.ncbi.nlm.nih.gov/23439373/</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/38282081/">https://pubmed.ncbi.nlm.nih.gov/38282081/</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/33075387/">https://pubmed.ncbi.nlm.nih.gov/33075387/</a></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Survey data from kidney stone formers regarding sources of dietary acid load: <a href="https://pubmed.ncbi.nlm.nih.gov/35752401/">https://pubmed.ncbi.nlm.nih.gov/35752401/</a></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Urine profile for vegans and omnivories (urine pH and cations/anions): <a href="https://pubmed.ncbi.nlm.nih.gov/36364731/">https://pubmed.ncbi.nlm.nih.gov/36364731/</a></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">SWAP-MEAT pilot trial: <a href="https://pubmed.ncbi.nlm.nih.gov/39514692/">https://pubmed.ncbi.nlm.nih.gov/39514692/</a> looked at urine profile on plant based meat diet (Beyond Meat) versus animal based meat diet</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Not all plant meat substitutes are the same in terms of net acid load: <a href="https://pubmed.ncbi.nlm.nih.gov/38504022/">https://pubmed.ncbi.nlm.nih.gov/38504022/</a></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Frassetto paper showing that the dietary acid load effect is mostly from sodium chloride: <a href="https://pubmed.ncbi.nlm.nih.gov/17522265/">https://pubmed.ncbi.nlm.nih.gov/17522265/</a></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Healthy eating is probably more important than plant based diet for CKD: <a href="https://pubmed.ncbi.nlm.nih.gov/37648119/">https://pubmed.ncbi.nlm.nih.gov/37648119/</a>, <a href="https://pubmed.ncbi.nlm.nih.gov/32268544/">https://pubmed.ncbi.nlm.nih.gov/32268544/</a></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">KDIGO 2024 guidelines: <a href="https://kdigo.org/guidelines/ckd-evaluation-and-management/">https://kdigo.org/guidelines/ckd-evaluation-and-management/</a></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Association (or lack thereof) of a pro-vegetarian diet and sarcopenia/protein energy wasting in CKD: <a href="https://pubmed.ncbi.nlm.nih.gov/39085942/">https://pubmed.ncbi.nlm.nih.gov/39085942/</a></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Outline Chapter 17 Introduction to simple and mixed acid-base disorders</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Introduction to Simple and Mixed Acid-Base Disorders</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Disturbances of acid-base homeostasis are common clinical problems</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Discussed in Chapters 18-21</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">This chapter reviews:</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Basic principles of acid-base physiology</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Mechanisms of abnormalities</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Evaluation of simple and mixed acid-base disorders</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Acid-Base Physiology</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Free hydrogen is maintained at a very low concentration</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">40 nanoEq/L</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">1 millionth the concentration of Na, K, Cl, HCO3</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">H+ is highly reactive and must be kept at low concentrations</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Compatible H concentration: 16 to 160 nanoEq/L</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">pH range: 7.8 to 6.8</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Buffers prevent excessive variation in H concentration</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Most important buffer: HCO3</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Reaction: H+ + HCO3 <=> H2CO3 <=> H2O + CO2</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">H2CO3 exists at low concentration compared to its products</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Henderson-Hasselbalch Equation (HH Equation)</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Understanding acid-base can use both H+ concentration and pH</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Measurement of pH</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Must be measured anaerobically to prevent CO2 loss</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Measurement methods:</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">pH: Electrode permeable to H+</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">PCO2: CO2 electrode</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">HCO3: Calculated using HH Equation</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Alternative: Add strong acid, measure CO2 released</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">PCO2 * 0.03 gives mEq of CO2</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Measured vs. Calculated HCO3</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">pKa of 6.1 and PCO2 coefficient (0.03) vary</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Measurement of CO2 prone to error</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Debate remains unresolved</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Differences affect anion gap calculations</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Arterial vs. Venous Blood Gas (ABG vs. VBG)</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Venous pH is lower due to CO2 retention</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Venous blood may be as accurate as arterial for pH if well perfused</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Pitfalls in pH Measurement</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Must cool ABG quickly to prevent glycolysis</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Air bubbles affect gas readings</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Heparin contamination lowers pH</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Arterial pH may not reflect tissue pH</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Reduced pulmonary blood flow skews results</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">End tidal CO2 > 1.5% indicates adequate venous return</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Regulation of Hydrogen Concentration</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>HCO3/CO2 as the Principal Buffer</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">High HCO3 concentration</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Independent regulation of HCO3 (renal) and PCO2 (lungs)</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Renal Regulation of HCO3</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">H secretion reabsorbs filtered bicarbonate</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Loss of HCO3 in urine equates to H retention</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">H combines with NH3 or HPO4, forming new HCO3</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Pulmonary Regulation of CO2</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">CO2 is not an acid but forms H2CO3</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Lungs excrete 15,000 mmol of CO2 daily</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Kidneys excrete 50-100 mmol of H daily</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">H = 24 * (PCO2 / HCO3)</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">pH compensation via respiratory and renal adjustments</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Acid-Base Disorders</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Definitions</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Acidemia: Decreased blood pH</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Alkalemia: Increased blood pH</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Acidosis: Process lowering pH</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Alkalosis: Process raising pH</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Primary PCO2 abnormalities: Respiratory disorders</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Primary HCO3 abnormalities: Metabolic disorders</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Compensation moves in the same direction as the primary disorder</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Diagnosis requires extracellular pH measurement</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Metabolic Acidosis</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Low HCO3 and low pH</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Causes:</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">HCO3 loss (e.g., diarrhea)</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Buffering of non-carbonic acid (e.g., lactic acid, sulfuric acid in renal failure)</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Compensation: Increased ventilation lowers PCO2</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Renal excretion of acid restores pH over days</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Metabolic Alkalosis</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">High HCO3 and high pH</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Causes:</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">HCO3 administration</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">H loss (e.g., vomiting, diuretics)</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Compensation: Hypoventilation</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Renal HCO3 excretion corrects pH unless volume or chloride depleted</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Respiratory Acidosis</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Due to decreased alveolar ventilation, increasing PCO2</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Compensation: Increased renal H excretion raises HCO3</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Acute phase: Large pH drop, small HCO3 increase</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Chronic phase: Small pH drop, large HCO3 increase</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Respiratory Alkalosis</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Due to hyperventilation, reducing CO2 and raising pH</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Compensation: Decreased renal H secretion, leading to bicarbonaturia</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Time-dependent compensation (acute vs. chronic phases)</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Mixed Acid-Base Disorders</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Multiple primary disorders can coexist</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Example:</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Low arterial pH with:</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Low HCO3 → Metabolic acidosis</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">High PCO2 → Respiratory acidosis</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Combination indicates mixed disorder</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Extent of renal and respiratory compensation clarifies diagnosis</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Compensation does not fully restore pH</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Example: pH 7.4, PCO2 60, HCO3 36 → Combined respiratory acidosis & metabolic alkalosis</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Acid-Base Map illustrates normal responses to disturbances</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Clinical Use of Hydrogen Concentration</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>H+ vs. pH Relationship</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">H = 24 * (PCO2 / HCO3)</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Normal HCO3 cancels out 24, so H = 40 nMol/L</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">pH to H conversion:</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Increase pH by 0.1 → Multiply H by 0.8</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Decrease pH by 0.1 → Multiply H by 1.25</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Example: Salicylate Toxicity</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">7.32 / 30 / xx / 15</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Goal: Alkalinize urine to pH 7.45 (H+ = 35 nMol/L)</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Bicarb needs to reach 20 for compensation</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Potassium Balance in Acid-Base Disorders</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Metabolic Acidosis</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">H+ buffered in cells, causing K+ to move extracellularly</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">K+ rises ~0.6 mEq/L per 0.1 pH drop</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Less predictable in lactic or ketoacidosis</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">DKA-associated hyperkalemia due to insulin deficiency</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Hyperkalemia can induce mild metabolic acidosis</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><strong>Respiratory Acid-Base Disorders</strong></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Minimal effect on potassium levels</p>
January 29, 2025
<p data-rte-preserve-empty="true" style="white-space:pre-wrap;">References</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">We talked about winning the 2022 ASN innovation contest and here’s a link to our promo video <a href="https://www.dropbox.com/scl/fi/g4osnf0nradsfryyo51fi/ASN-Education-Contest-Channel-Your-Enthusiasm-Podcast.mp4?rlkey=pnso45x07nr3pane9y8cux8yg&e=1&dl=0">https://www.dropbox.com/scl/fi/g4osnf0nradsfryyo51fi/ASN-Education-Contest-Channel-Your-Enthusiasm-Podcast.mp4?rlkey=pnso45x07nr3pane9y8cux8yg&e=1&dl=0</a></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">We wondered about “permissive hypercreatinemia” and Josh referenced the DOSE trial: <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5435117/">Relevance of Changes in Serum Creatinine During a Heart Failure Trial of Decongestive Strategies: Insights From the DOSE Trial - PMC</a></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Plus this editorial by Steve Coca: <a href="https://pubmed.ncbi.nlm.nih.gov/29773711/">Ptolemy and Copernicus Revisited: The Complex Interplay between the Kidneys and Heart Failure</a></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">We refer to the Frank-Starling curve and reference an image from this paper by Jay Cohen: <a href="https://www.sciencedirect.com/science/article/abs/pii/0002934373901356">Blood pressure and cardiac performance - ScienceDirect</a></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">We felt that this chapter is dated with respect to heart failure. Check out this <a href="https://www.ahajournals.org/doi/10.1161/CIR.0000000000001063">2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines</a></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><a href="https://pubmed.ncbi.nlm.nih.gov/7144841/">Underfilling versus overflow in hepatic ascites</a> an editorial by Frank Epstein </p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><a href="https://www.ajkd.org/article/S0272-6386(84)80042-6/fulltext">Effect of Head-Out Water Immersion on Hepatorenal Syndrome - American Journal of Kidney Diseases</a> studies done by Schrier which Roger mentioned</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">The fading concept: <a href="https://www.tandfonline.com/doi/abs/10.3109/00365528309182102?journalCode=igas20">https://www.tandfonline.com/doi/abs/10.3109/00365528309182102?journalCode=igas2</a></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><a href="https://aasldpubs.onlinelibrary.wiley.com/doi/full/10.1002/cld.1090">Historical Aspects of Ascites and the Hepatorenal Syndrome - Wong - 2021 - Clinical Liver Disease - Wiley Online Library</a></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Here’s a great paper from Andrew Allegretti on HRS prognosis: <a href="https://pubmed.ncbi.nlm.nih.gov/29122911/">Prognosis of Patients with Cirrhosis and AKI Who Initiate RRT - PubMed</a></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Joel mentions landmark paper in NEJM for treating SBP <a href="https://www.nejm.org/doi/full/10.1056/nejm199908053410603">Effect of Intravenous Albumin on Renal Impairment and Mortality in Patients with Cirrhosis and Spontaneous Bacterial Peritonitis | New England Journal of Medicine</a></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;"><a href="https://aasldpubs.onlinelibrary.wiley.com/doi/10.1002/hep.24786">Albumin infusion in patients undergoing large‐volume paracentesis: A meta‐analysis of randomized trials - Bernardi - 2012 - Hepatology - Wiley Online Library</a></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Joel wondered about the lore that minoxidil could lead to renal recovery: <a href="https://pubmed.ncbi.nlm.nih.gov/691223/">Minoxidil treatment of malignant hypertension. Recovery of renal function</a></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Roger recalled an agent diazoxide: <a href="https://www.rxwiki.com/hyperstat">Hyperstat - Side Effects, Uses, Dosage, Overdose, Pregnancy, Alcohol | RxWiki</a></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Here’s an entertaining review on whether insulin leads to sodium retention: <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3533616/">Invited Review: Sodium-retaining effect of insulin in diabetes - PMC</a></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Invasive monitoring for hemodynamics</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">FACTT: <a href="https://www.nejm.org/doi/full/10.1056/NEJMoa062200">https://www.nejm.org/doi/full/10.1056/NEJMoa062200</a></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">ESCAPE: <a href="https://pubmed.ncbi.nlm.nih.gov/16204662/">https://pubmed.ncbi.nlm.nih.gov/16204662/</a></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">PACMAN: <a href="https://pubmed.ncbi.nlm.nih.gov/16084255/">https://pubmed.ncbi.nlm.nih.gov/16084255/</a></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">EVEREST trial and use of tolvaptan in HFrEF</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">EVEREST: <a href="https://pubmed.ncbi.nlm.nih.gov/17384437/">https://pubmed.ncbi.nlm.nih.gov/17384437/</a></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Post-hoc analysis of hyponatremic patients of EVEREST: <a href="https://pubmed.ncbi.nlm.nih.gov/23743487/">https://pubmed.ncbi.nlm.nih.gov/23743487/</a></p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Outline Chapter 16 — Edematous States part 2</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Symptoms and diagnosis</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Three factors important in the mechanism of edema</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">The pattern of distribution of edema which reflects those capillaries with altered hemodynamic forces</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">The central venous pressure</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Presence or absence of pulmonary edema</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Pulmonary edema</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Shortness of breath and orthopnea</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Tachypnic, diaphoretic, wet rales, gallops, murmurs</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Check a chest x-ray</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Cardiac disease is most common</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">But differential includes primary renal Na retention and ARDS</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Wedge pressure will exceed 18-20 mmHg with heart or primary Na retention, but is relatively normal with ARDS</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Uncomplicated cirrhosis does not cause pulmonary edema</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Increased capillary pressure in this disorder is only seen below the hepatic vein</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Normal or reduced blood volume in the cardiopulmonary circulation</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Peripheral edema and ascites</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Peripheral edema is cosmetically undesireable but produces less serious symptoms</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Symptoms: swollen legs, difficulty walking, increased abdominal girth, shortness of breath due to pressure on the diaphragm.</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Pitting edema found in dependent areas</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Ascites found in abdomen</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Nephrotic syndrome low tissue pressure areas like eye orbits</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Heart Failure (right sided) peripheral edema, abdominal wall, SOB is due to concomitant pulmonary disease. Right sided heart failure increases venous pressure</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Cirrhosis develop cirrhosis and lower extremity edema, pressure above the hepatic vein is normal or low.</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Tense ascites can increase the pressure above the diaphragm but is relieved with a tap</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Portal pressure > 12 mmHg required for fluid retention</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Love the case history 16-1</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Primary renal sodium retention</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Pulmonary and peripheral edema</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Jugular venous pressure is elevated</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Nephrotic Syndrome</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Periorbital and peripheral edema, rarely ascites</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">CVP normal to high</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Idiopathic edema</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Behaves as volume depleted (especially with diuretics)</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Etiology and treatment</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">General principles of treatment</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">When must edema be treated</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">What are the consequences of the removal of fluid</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">How rapidly should fluid be removed</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">When</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Pulmonary edema is the only form of generalized edema that is life threatening and demands immediate treatment</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Important for note: laryngeal edema and angioedema. Cerebral edema</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">What are the consequences</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">If the edema fluid is compensatory (heart failure, cirrhosis, capillary leak syndromes) then removal of fluid with diuretics will diminish effective circulating volume.</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Despite this drop in effective circulating volume, most patients benefit from the appropriate use of diuretics.</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Cardiac output falls 20% with diuresis of pulmonary congestion but exercise tolerance increases</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Says to be careful in diuresis leads to increases in Cr</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">How rapidly should edema fluid be removed</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Removing vascular fluid changes starling forces (reduced venous pressure) so fluid rapidly mobilized from interstitium. 2-3 liters per 24 hours can often be removed without difficulty</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">An exception is cirrhosis and ascites without peripheral edema. Mobilizing ascites is limited to 500-750 ml/day</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Heart failure</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Edema is due to increase in venous pressure raising capillary hydrostatic pressure</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Ischemic and hypertensive CM impairs left ventricular function causing pulmonary but little peripheral edema</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">In acute pulmonary edema the LV disease results in increased LVEDP and increased left atrial pressure which transmit back to the pulmonary vein</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">When wedge exceeds 18-20 (normal is 5-12) get pulmonary edema</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Cor pulmonale due to pure right heart failure prominent edema in the lower extremities</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Cardiomyopathies tend to affect right and left ventricles leading to simultaneous onset of pulmonary and peripheral edema.</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Discusses forward hypothesis in which reduction in cardiac output triggers decreased tissue perfusion activation of SNS and RAAS.</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Catecholamines increase cardiac output</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">RAAS increase Sodium retention</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Edema is absent and patients can be compensated at the expense of increased LVEDP see Figure 16-6</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Figure 16-6 A to B to C with compensation</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Eventually the increased sodium retention and increased intracranial pressure are enough to cause edema.</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">He then brings up multiple important points (in bullets none the less)</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Dual effects of fluid retention:</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Increased cardiac output</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Potential harmful elevation in venous pressure</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Benefit is found with increase in LVEDP from 12 to 15, after that it seems mostly deleterious</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Vascular congestion (elevated LVEDP) and a low cardiac output do not have to occur together. See points B and C on 16-6.</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Frank-Starling relationship varies with exercise.</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Patients with moderate heart disease may be okay at rest but fail with mild exertion. This leads to more neurohormonal activation. This can worsen sodium retention and ischemia. Rest here can help augment diuretic effect. Doubling diuretic response. 40% increase in GFR.</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Mild to mod heart disease may have no edema with dietary Na restriction. Na intake will initially increase preload and improve cardiac output and allow the Na to be excreted but as the Frank Starling curves flatten then excess sodium cannot be excreted.</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Diastolic vs Systolic dysfunction</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Decreased compliance in diastolic dysfunction can lead to flash pulmonary edema</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">More common with hypertension</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Look to the ejection fraction</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Neurohormonal adaptation</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Initial benefit long term adverse effects</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Norepi, renin, ADH all are vasoconstrictors</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">They raise cardiac output</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Raise BP which is maladaptive in the long term</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Treatment of cardiogenic pulmonary edema</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Morphine</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Oxygen</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Loop diuretic</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">NTG/nitroprusside</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">If patient remains in pulmonary edema and has systolic dysfunction consider inotropic agent</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Treatment of chronic heart failure</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Feels dated</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Mentions dig and loop diuretic</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">But also ACEi/BB and AA</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Deep dive</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Loop diuretics</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">ACEi</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Cor Polminale</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Edema here comes with increased CO2</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Associated with increased HCO3 which means increased</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">HCO3 reabsorption int he proximal tubule which leads to more sodium retention</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Hypoxemia can increase Na retention</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Cirrhosis and Ascites</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Both lymphatic obstruction and increased capillary permeability contribute</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Sinusoidal obstruction leads to increased hydraulic pressure in the sinusoids.</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Portal hypertension is necessary for ascites</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">> 12 mmHg</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">The low albumin is often present but is not contributory to edema</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Sinusoids are freely permeable to albumin so no oncotic pressure from albumin here</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Mechanism of ascites</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Renal sodium conservation is an early finding and some evidence for primary sodium retention but…</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Mostly underfill is thought to drive Na retention</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Splanchnic vasodilation starts this of</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">NO drives this</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Endotoxin absorption stimulates No</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Normally endotoxin is detoxed in liver but portosystemic shunting allows endotoxin to escape the liver.</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Hepatorenal syndrome</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Progressive hemodynamically mediated fall in GFR</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Induced by intense renal vasocontstriction</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Where are the PGE and Kinins</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Fall in GFR is masked by decreased muscle mass and decreased BUN production</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Hyponatremia is a grave prognostic sign, as it is in heart failure, Indicates increased activation of vasopressin</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Treatment</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Low Na intake</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Low water intake</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Care with diuretics, can only mobilize 300-500 ml of ascetic fluid a day</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Avoid hypokalemia</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Stimulates NH3 production</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Talks about the mechanism in proximal tubule</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Also discusses pKA of NH3->NH4 reaction and if the pH rises, this will shift the Eq to produce NH3</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Important aspect in NH3 is lipid soluble and NH is not</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Says that Spiro is diuretic of choice</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">States it is more effective than furosemide in this condition</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Effectiveness related to slower rate of drug excretionin urine (compromises furosemide but not spiro) competition with bile salts</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Recommends 40 furosemide and 100 of spiro</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Resistant ascites</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Options</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">paracentesis</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">TIPS</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Complicated by higher mortality</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Peritoneovenous shunt</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Largely abandoned,</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Primary renal sodium retention</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">CKD or AKI where low GFR linits excretion of Water and Na</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Acute GN or nephrotic syndrome</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Broken glom with intact tubules, mean the tubules see less Na so they think “underperfused” and then they increase renal retention of NA</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Drugs</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Direct vasodilators like minoxidil</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Require super high furosemide doses to counter</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Other antihypertensives either block sympathetic NS, Na retention directly or block RAAS explains why they don’t cause Na retention</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">NSAIDS</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Fludrocortisone</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Pregnancy</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Normal pregnancy is associated with retention of 900 to 1000 mEq of Na</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">And! 6-8 liters of water</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Refeeding edema</p><p class="" data-rte-preserve-empty="true" style="white-space:pre-wrap;">Insulin stimulate Na retention</p>
NephJC Team
American College of Physicians
Core IM Team
The Curious Clinicians
The Curbsiders Internal Medicine Podcast
Walker Redd, Emily Gutowski, Navin Kumar, Joyce Zhou, Blake Smith
The Clinical Problem Solvers
JAMA Network
International Society of Glomerular Disease
CardioNerds
Mayo Clinic
Scott D. Weingart, MD FCCM
NEJM Group
Ninja Nerd
Brandon Oto, PA-C, FCCM and Bryan Boling, DNP, ACNP, FCCM
Pod Engine is not affiliated with, endorsed by, or officially connected with any of the podcasts displayed on this platform. We operate independently as a podcast discovery and analytics service.
All podcast artwork, thumbnails, and content displayed on this page are the property of their respective owners and are protected by applicable copyright laws. This includes, but is not limited to, podcast cover art, episode artwork, show descriptions, episode titles, transcripts, audio snippets, and any other content originating from the podcast creators or their licensors.
We display this content under fair use principles and/or implied license for the purpose of podcast discovery, information, and commentary. We make no claim of ownership over any podcast content, artwork, or related materials shown on this platform. All trademarks, service marks, and trade names are the property of their respective owners.
While we strive to ensure all content usage is properly authorized, if you are a rights holder and believe your content is being used inappropriately or without proper authorization, please contact us immediately at [email protected] for prompt review and appropriate action, which may include content removal or proper attribution.
By accessing and using this platform, you acknowledge and agree to respect all applicable copyright laws and intellectual property rights of content owners. Any unauthorized reproduction, distribution, or commercial use of the content displayed on this platform is strictly prohibited.