by 马克孙
脑袋尖尖,我们是伦敦的理工学生,想要做一个分享科技新闻,探索前沿科技和学术论文的播客。
Language
🇨🇳
Publishing Since
12/30/2024
Email Addresses
1 available
Phone Numbers
0 available
December 30, 2024
<p>概述本期主题:</p><p>深入解析 Scaling Law及其在模型性能优化中的应用。</p><p>核心问题:</p><p>Scaling Law 描述了模型性能如何随着模型参数规模、数据集大小和计算资源投入增长,展现出一定的幂律关系。</p><p>讨论内容涵盖 Scaling Law 的核心公式、应用场景,潜在局限性及未来发展的可能性。</p><p>时间轴</p><p>00:00 - 开场与节目介绍</p><p>01:02 - 什么是 Scaling Law?核心概念解析</p><p>11:48 - Scaling Law 的现实意义及限制</p><p>19:51 - 应用案例:OpenAI 的研究成果及行业观察</p><p>23:16 - Scaling Law 的限制及未来发展方向</p><p>24:16 - 结尾总结</p><p>相关资源:</p><p>OpenAI 的 Scaling Law 研究论文</p><p>https://doi.org/10.48550/arXiv.2001.08361</p><p>Hestness, Joel; Narang, Sharan; Ardalani, Newsha; Diamos, Gregory; Jun, Heewoo; Kianinejad, Hassan; Patwary, Md Mostofa Ali; Yang, Yang; Zhou, Yanqi (2017-12-01). "Deep Learning Scaling is Predictable, Empirically"</p><p>https://doi.org/10.48550/arXiv.1712.00409</p><p>Hoffmann, Jordan; Borgeaud, Sebastian; Mensch, Arthur; Buchatskaya, Elena; Cai, Trevor; Rutherford, Eliza; Casas, Diego de Las; Hendricks, Lisa Anne; Welbl, Johannes; Clark, Aidan; Hennigan, Tom; Noland, Eric; Millican, Katie; Driessche, George van den; Damoc, Bogdan (2022-03-29). "Training Compute-Optimal Large Language Models"</p><p>https://doi.org/10.48550/arXiv.2203.15556</p><p>联系我们</p><p>如果喜欢本期节目,请订阅、分享,欢迎留下宝贵的意见,如有错误请多指正,新人上路,请多指教!</p><p>联系方式:公众号【孙霄逸 Xiaoyi】</p><p>特别鸣谢:</p><p>本期主播:马克孙, 老柏</p><p>感谢团队:对本期节目的策划与剪辑支持。</p>
Pod Engine is not affiliated with, endorsed by, or officially connected with any of the podcasts displayed on this platform. We operate independently as a podcast discovery and analytics service.
All podcast artwork, thumbnails, and content displayed on this page are the property of their respective owners and are protected by applicable copyright laws. This includes, but is not limited to, podcast cover art, episode artwork, show descriptions, episode titles, transcripts, audio snippets, and any other content originating from the podcast creators or their licensors.
We display this content under fair use principles and/or implied license for the purpose of podcast discovery, information, and commentary. We make no claim of ownership over any podcast content, artwork, or related materials shown on this platform. All trademarks, service marks, and trade names are the property of their respective owners.
While we strive to ensure all content usage is properly authorized, if you are a rights holder and believe your content is being used inappropriately or without proper authorization, please contact us immediately at [email protected] for prompt review and appropriate action, which may include content removal or proper attribution.
By accessing and using this platform, you acknowledge and agree to respect all applicable copyright laws and intellectual property rights of content owners. Any unauthorized reproduction, distribution, or commercial use of the content displayed on this platform is strictly prohibited.