Email Addresses
1 available
Phone Numbers
0 available
December 22, 2023
<h2><strong>嘉宾介绍</strong></h2><p>孙政航博士2023年在中国科学院物理研究所获得博士学位,研究方向是量子多体系统的非平衡性质以及量子模拟。</p><h2><strong>内容索引</strong></h2><p>[1:25] 什么是量子模拟?量子模拟解决什么问题?</p><p>[10:58] 量子模拟和量子计算的关系;</p><p>[15:50] Analog量子模拟和Digital量子模拟方案的选择;</p><p>[25:12] 量子平台成为量子模拟器的条件;</p><p>[26:52] 量子模拟与量子纠错的关系;</p><p>[31:50] 量子模拟的未来发展方向;</p><p>[41:30] 如何判断无法经典计算的量子模拟结果正确性?</p><p>[46:09] 量子计算的下一个里程碑事件是什么?</p><p>[50:45] 量子模拟和量子计算什么时候可以给大众带来实质上的生活改变?</p><p>[53:24] 从事量子模拟领域的初衷和未来的个人发展;</p><p>[58:15] 对进入这个领域的研究生的建议。</p><h2><strong>相关链接</strong></h2><p><a href="https://link.aps.org/doi/10.1103/RevModPhys.86.153">Review: Quantum simulation</a></p><p><a href="https://www.nature.com/articles/s41586-021-04257-w">Paper: Time-crystalline eigenstate order on a quantum processor</a></p><h2><strong>关于我们</strong></h2><p>主持:shaojun,浮生</p><p>《容不容错》是一档讨论量子计算及相关领域的播客节目。</p><p>如果你对这个方向有独到见解,欢迎联系我们。</p><p>联系邮箱:[email protected]</p>
July 22, 2022
<h2><strong>本期内容</strong></h2><p>第一期节目,我们邀请到在量子计算领域有丰富经历的郑亚锐博士,来聊一聊超导量子计算行业的发展现状和未来前景。内容包括:</p><ul> <li>学术界和工业界做量子计算的异同;</li> <li>量子计算方向的创业;</li> <li>Google Quantum AI最新纠错工作的讨论;</li> <li>量子计算的发展前景。</li></ul><p>相关链接</p><p><a href="https://quantumai.google/research">Google Quantum AI Roadmap</a></p><p><a href="https://research.ibm.com/blog/ibm-quantum-roadmap-2025">IBM Quantum Roadmap</a></p><p><a href="https://arxiv.org/abs/2207.06431">Paper: Suppressing quantum errors by scaling a surface code logical qubit</a></p><h2><strong>嘉宾介绍</strong></h2><p>郑亚锐博士是2016年在中科院物理所获得博士学位,2016年至2018年在中科大从事博士后研究,2019年加入腾讯公司作为腾讯量子实验室的硬件负责人。现在,郑博士正在计划创业,以通用量子计算为目标,专注于量子技术的研究和应用。</p><p>ps:如果你是物理,电子学,计算机,软件等相关方向,有志于一起推动量子计算的发展,可联系郑亚锐博士:[email protected]</p><h2><strong>关于我们</strong></h2><p>主持:shaojun,浮生</p><p>《容不容错》是一档讨论量子计算及相关领域的播客节目。</p><p>如果你对这个方向有独到见解,欢迎联系我们。</p><p>联系邮箱:[email protected]</p>
Pod Engine is not affiliated with, endorsed by, or officially connected with any of the podcasts displayed on this platform. We operate independently as a podcast discovery and analytics service.
All podcast artwork, thumbnails, and content displayed on this page are the property of their respective owners and are protected by applicable copyright laws. This includes, but is not limited to, podcast cover art, episode artwork, show descriptions, episode titles, transcripts, audio snippets, and any other content originating from the podcast creators or their licensors.
We display this content under fair use principles and/or implied license for the purpose of podcast discovery, information, and commentary. We make no claim of ownership over any podcast content, artwork, or related materials shown on this platform. All trademarks, service marks, and trade names are the property of their respective owners.
While we strive to ensure all content usage is properly authorized, if you are a rights holder and believe your content is being used inappropriately or without proper authorization, please contact us immediately at [email protected] for prompt review and appropriate action, which may include content removal or proper attribution.
By accessing and using this platform, you acknowledge and agree to respect all applicable copyright laws and intellectual property rights of content owners. Any unauthorized reproduction, distribution, or commercial use of the content displayed on this platform is strictly prohibited.