by Steven Strogatz, Janna Levin and Quanta Magazine
<p>“The Joy of Why” is a Quanta Magazine podcast about curiosity and the pursuit of knowledge. The mathematician and author Steven Strogatz and the cosmologist and author Janna Levin take turns interviewing leading researchers about the great scientific and mathematical questions of our time. New episodes are released every other Wednesday.</p><p>Quanta Magazine is a Pulitzer Prize–winning, editorially independent online publication launched and supported by the Simons Foundation to illuminate big ideas in science and math through public service journalism. Quanta’s reporters and editors focus on developments in mathematics, theoretical physics, theoretical computer science and the basic life sciences, emphasizing timely, accurate, in-depth and well-crafted articles for its broad discerning audience. In 2023, Steven Strogatz received a National Academies Eric and Wendy Schmidt Award for Excellence in Science Communications partly for his work on “The Joy of Why.”</p>
Language
🇺🇲
Publishing Since
3/17/2022
Email Addresses
1 available
Phone Numbers
0 available
April 17, 2025
Quantum gravity is one of the biggest unresolved and challenging problems in physics, as it seeks to reconcile quantum mechanics, which governs the microscopic world, and general relativity, which describes the macroscopic world of gravity and space-time. Efforts to understand quantum gravity have been focused almost entirely at the theoretical level, but Monika Schleier-Smith at Stanford University has been exploring a novel experimental approach — trying to create quantum gravity from scratch. Using laser-cooled clouds of atoms, she is testing the idea that gravity might be an emergent phenomenon arising from quantum entanglement. In this episode of the Joy of Why podcast, Schleier-Smith discusses the thinking behind what she admits is a high-risk, high-reward approach, and how her experiments could provide important insights about entanglement and quantum mechanical systems even if the end goal of simulating quantum gravity is never achieved.
April 3, 2025
Quantum computing promises unprecedented speed, but in practice, it’s proven remarkably difficult to find important questions that quantum machines can solve faster than classical ones. One of the most notable demonstrations of this came from <a href="https://ewintang.com/">Ewin Tang</a> who rose to prominence in the field as a teenager. When quantum algorithms had in principle cracked the so-called recommendation problem, Tang <a href="https://www.quantamagazine.org/teenager-finds-classical-alternative-to-quantum-recommendation-algorithm-20180731/">designed classical algorithms that could match them</a>. So began the approach of “dequantizing,” in which computer scientists look at quantum algorithms and try to achieve the same speeds with classical counterparts. To understand the ongoing contest between classical and quantum computing, co-host Janna Levin spoke to Tang on The Joy of Why podcast. The wide-ranging conversation covered what it was like for Tang to challenge the prevailing wisdom at such a young age, the role of failure in scientific progress, and whether quantum computing will ultimately fulfill its grand ambitions.
March 20, 2025
At first, life on Earth was simple. Cells existed, functioned and reproduced as free-living individuals. But then, something remarkable happened. Some cells joined forces, working together instead of being alone. This transition, known as multicellularity, was a pivotal event in the history of life on Earth. Multicellularity enabled greater biological complexity, which sparked an extraordinary diversity of organisms and structures. How life evolved from unicellular to multicellular organisms remains a mystery, though evidence indicates that this may have occurred multiple times independently. To understand what could have happened, Will Ratcliff at Georgia Tech has been conducting long-term evolution experiments on yeast in which multicellularity develops and emerges spontaneously. In this episode of The Joy of Why podcast, Ratcliff discusses what his “snowflake yeast” model could reveal about the origins of multicellularity, the surprising discoveries his team has made, and how he responds to skeptics who question his approach.
Quanta Magazine
Sean Carroll | Wondery
Physics World
Lawrence M. Krauss
iHeartPodcasts
The Royal Astronomical Society
Paul M. Sutter
Big Bang Productions Inc.
Gabriel Hesch and Autumn Phaneuf
Closer To Truth
Theories of Everything
Vox
Robinson Erhardt
Big Picture Science
Pod Engine is not affiliated with, endorsed by, or officially connected with any of the podcasts displayed on this platform. We operate independently as a podcast discovery and analytics service.
All podcast artwork, thumbnails, and content displayed on this page are the property of their respective owners and are protected by applicable copyright laws. This includes, but is not limited to, podcast cover art, episode artwork, show descriptions, episode titles, transcripts, audio snippets, and any other content originating from the podcast creators or their licensors.
We display this content under fair use principles and/or implied license for the purpose of podcast discovery, information, and commentary. We make no claim of ownership over any podcast content, artwork, or related materials shown on this platform. All trademarks, service marks, and trade names are the property of their respective owners.
While we strive to ensure all content usage is properly authorized, if you are a rights holder and believe your content is being used inappropriately or without proper authorization, please contact us immediately at [email protected] for prompt review and appropriate action, which may include content removal or proper attribution.
By accessing and using this platform, you acknowledge and agree to respect all applicable copyright laws and intellectual property rights of content owners. Any unauthorized reproduction, distribution, or commercial use of the content displayed on this platform is strictly prohibited.